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Abstract. A technique is developed for solving the large-scale generalised eigenproblem 
Ab = EBb, where A and B are real symmetric and block tridiagonal or band form matrices; 
B is positive definite. In physics this technique can be used to calculate the eigenvectors 
of a large electronic system in a basis of non-orthogonal orbitals. 

In physics and engineering, many problems can be expressed as a generalised eigen- 
problem. For example, one chain or many coupled chain systems provide an expansion 
of the Hamiltonian in a basis of non-orthogonal orbitals which require a solution of 
the eigenproblem 

Hb = ESb (1) 

where H is a Hamiltonian, E and b are an eigenvalue and an eigenvector respectively, 
S is an overlap matrix and S,  # 6,. In a disordered system we need to solve unusually 
large-scale systems. Some methods are available [ 1,2] to solve equation ( l ) ,  but how 
to solve the large-scale generalised eigenproblem is still unresolved. 

In the present letter a technique is developed for solving the generalised eigen- 
problem 

A b  = EBb (2) 

where A and B are real symmetric and block tridigonal or band form matrices; B is 
positive definite. We also point out the condition under which this method can be 
used to handle electronic systems in a basis of non-orthogonal orbitals. 

One way to solve equation (2) is to rewrite it as a classical eigenproblem, for 
example, using the Cholesky factorisation: 

B = LL= 

or to write (2) as: 

( B - ' A ) b  = Eb. (3) 
However, there are some disadvantages of this method. If A, B are of very high order, 
this may introduce a storage problem. In the calculation of B-',  it is easy to induce 
a large error. Furthermore, the matrix B-'A is no longer of sparse form and even A, 
B are block tridiagonal or band form. So this method can only be used to solve small 
matrices. 
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In this letter we directly solve equation (2) using the fact that the leading principal 
minors det(A, - EB,) ( r  = 1,2, . . .) form a Sturm sequence. Then the j th  eigenvalue 
Ej can be determined by a bisection method to the desired degree of accuracy. By 
using the method developed by Zheng [3,4] the eigenvector b can be calculated. 

In practice this procedure is as follows. For real symmetric block tridiagonal 
matrices A and B:  

( A  - EB)  b = 0 

All - EBll A12- EB12 0 
A21 - EB21 A 2 2  - EB22 A 2 3  - EB23 

A32 - EB32 A33 - EB33 - EB34 

0 i Am,m-l-EBm,m-l A m m -  EBmm 

A - E B =  

where Aii, Bii are N i x  Ni submatrices; A,=Aji, B,= Bji, and A,, B, are N i x  Nj 
submatrices. B is positive definite. Ni = N. If Ni = n for i = 1, 2 , .  . . , m, the A, 
B are of band form. 

Let T (  M )  be the number of negative eigenvalues of matrix M. For a real parameter 

Then, by bisection, the eigenvalue E, can be determined. 
The eigenvector b is determined by: 

( A  - EjB)b = 0. 

Let 

D = ( A - E j B ) .  

For bk # 0, equation ( 5 )  can be divided into three equations: 

Dll Dl2 
0 

0 
Dk-1,k-1 Dk-1,k-1 

DSk-1 ' bk-1 Dkk ' bk Dk,k+l ' bk+, = 0 

0 
0 

0 
-Dk-l,kbk 
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b ,  = - A &  * Dm,m-l * b,-l 
1 1 1 2  2 

where 

A f  = (Dii - Di,i+l A:+1 - Di*I,i)-'. 

bk is determined by equation (7). 
For bkl#O, let b k l = l  then we obtain the bkI, 1=1, 2 ,..., I-1, 14-1 ,..., Nk by 

using equations (7) and (9). After determining bk, all bk+r, r =  11 ,  1 2 , .  . . can be 
obtained by equations (9) and (10). The choice of S I  is the key [3,4]. 

In some physics problems the Hamiltonian in the basis of non-orthogonal orbitals 
is a block tridiagonal matrix or band form matrix. In most cases the matrix is real 
symmetric. That means that in equation (1) H, S are real symmetric, block tridiagonal 
or band form. But is the overlap matrix S the positive definite or not? 

From Gershgorin's theorem, every eigenvalue A of matrix S satisfies at least one 
of the equations: 

[ & - A I <  i = l , 2 ,  .... ( 1 1 )  
j # i  

It is very easy to prove that if 

(12) 

then all eigenvalues of matrix S are positive. For such cases the above method can 
be used to solve equation (1). 

Because in electronic tight-binding systems, the conditions JSiil >> IS,l and Sii > 0 
are always satisfied, so in most cases the conditions (12) are fulfilled and S is positive 
definite. Maybe in some particular situations the off-diagonal elements of S are large 
enough that it is necessary to check the inequalities (12) when we use this method. 

In'order to check this method we choose a two coupled chains model. Hii = E ~ ,  ci 
being a random number distributed uniformly in the interval [- W/2, W/2] and 
W = 1.0. The nearest-neighbour hopping elements are H, = 1.0, the nearest-neighbour 
overlap elements are S, = 0.2 for the intra-chain and S,  = 0.1 for the inter-chain. Sii = 1.0 
and S, = 0, Hij = 0 for others. The chain length is L and the total number of atoms is 
N = 2 L ,  L = 5 ~ 1 0 - ~ .  

Because Sii>O, S,SO and S i i > Z j + i S , ,  S is positive definite. We can use this 
procedure. The density of state of the two-chains diagonal random system is shown 
in figure 1, calculated by equation (4) and formula: 

p(x) = { T[ H - (X + A x ) S ]  - v[ H - xS]}/ ( N A x ) .  
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Figure 1. The density of states (DOS) of two coupled chains with N = 2 x 5000. 

In figures 2 and 3 two eigenvectors are shown. Two states are localised. One is in the 
band medium, the other is in the band tail. The above calculation only requires an 
Altos microcomputer. 

The sample calculation demonstrates that this method is efficient and can be used 
to handle large-scale electronic systems in a basis of non-orthogonal orbitals using an 
Altos or Vax computer. That means that we have a technique to compute the electronic 
properties of polymer or biological long-molecule chains. 
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Figure 2. The square of components of eigenvector for Ej = 0.000 345. 
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Figure 3. The square of components of eigenvector for E, = -2.109 375. 
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In summary, to combine the theory of Sturm sequence and the method developed 
by Zheng, a procedure for the solution of the generalised eigenproblem is developed. 
This procedure is particularly useful for high-order band form matrices. After checking 
the positive definite property of the overlap matrix S, the method can be used to 
compute the electronic properties of polymer or biological long-chain molecules. This 
programme of research work is now under active consideration. 
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